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This paper presents the force coefficients (added mass and damping) for a circular
cylinder oscillating horizontally in a uniformly stratified fluid of limited depth and
in a continuously stratified fluid with a smooth pycnocline. The frequency-dependent
added mass and damping are evaluated from Fourier transforms of the experimental
records of impulse response functions. The stratification is shown to have a strong
effect on the fluid–body interaction. It is found that, when the characteristic vertical
extent of stratification (depth of uniformly stratified fluid or pycnocline thickness)
decreases, the power radiated with internal waves is reduced and the maximum of
the frequency spectrum of wave power shifts toward lower frequency. The results of
experiments are compared with available theoretical predictions.

1. Introduction
It is well known that rectilinear vibrations of a two-dimensional body at frequency

ω in a stratified fluid with constant Brunt–Väisälä frequency N produce internal
waves within four beams (the so-called ‘St.Andrew-cross-wave’), which are inclined
at the angle ϕ = arcsin(Ω) to the horizontal, where Ω = ω/N. The width of the
beams is about the size of the oscillating body. In the three-dimensional case the
internal waves radiated by a vibrating body are confined within a double cone. The
phase pattern of internal waves, which was first identified in a pioneering study by
Mowbray & Rarity (1967), can be explained from the viewpoint of ‘ray’ theory (see
e.g. Turner 1973). However, the ‘ray’ theory fails to capture important physical values
(such as the amplitude distribution across the internal wave beams, the decay of
internal waves with distance, power radiated with waves, the force acting on a body
oscillating in a stratified fluid), which are of vital practical interest in oceanography,
atmospheric physics and marine engineering. A considerable scientific effort has been
made during past three decades to gain more detailed knowledge of the internal
wave field generated by different oscillatory disturbances. A detailed bibliography
with critical assessment of existing wave theories and solutions to a variety of three-
dimensional problems can be found in Voisin (1991). Particular mention should be
made of the solutions for the flat plate (Hurley 1969), the spheroid (Lai & Lee
1981), the sphere (Appleby & Crighton 1987), and circular (Appleby & Crighton
1986; Makarov, Neklyudov & Chashechkin 1990) and elliptic cylinders (Hurley 1997;
Hurley & Keady 1997). Note that the measurements and observations of the internal
wave patterns generated by oscillating bodies do not seem to provide a decisive
verification of existing wave theories (see e.g. discussions in Ivanov 1989 and Makarov
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et al. 1990). Recent advancement in detailed quantitative measurement of parameters
of internal wave motion has been attained with the help of the ‘synthetic schlieren’
technique described in Sutherland et al. (1999) and Dalziel, Hughes & Sutherland
(2000).

An alternative approach is to compare the measurements of the force acting on a
body oscillating in a stratified fluid to the predictions of a particular internal wave
theory. Apart from the purposes of verification, this problem has an engineering
counterpart in the prediction of the low-frequency motion of marine structures and
deep submersibles in real stratified sea. However, few authors have paid attention
to this problem. Within the framework of the Boussinesq approximation, Lai & Lee
(1981) have obtained a solution for a spheroid oscillating in the vertical direction in
inviscid infinitely deep stratified fluid with N = const. Under the same assumptions,
Hurley (1997) has derived the formula for the hydrodynamic force acting on an elliptic
cylinder undergoing rectilinear vibrations at an arbitrary angle to the horizontal. Lai
& Lee (1981) formulate their results by introducing the notion of the complex added
mass and consider its amplitude and phase versus the oscillation frequency. A similar
concept is used by Hurley (1997). These results can be easily reformulated in terms
of the standard added mass and damping coefficient, i.e. the total hydrodynamic
force can be decomposed into the components acting in phase with acceleration and
velocity of the body motion as is customary in ship hydrodynamics (see e.g. Newman
1977, 1978). The added mass characterizes the variation of inertial properties of the
fluid–body system while the damping coefficient is proportional to the mean dissipated
power. In ideal linearly stratified fluid, the radiation of energy with waves is the sole
mechanism of energy dissipation. Accordingly, the damping coefficient is non-zero
only when Ω < 1 both in two-dimensional and three-dimensional problems since the
radiation of internal waves in such a system at Ω > 1 is physically impossible. When
Ω > 1, the added mass asymptotically approaches the value in homogeneous fluid.
The behaviour of the added mass at Ω < 1 in two-dimensional and three-dimensional
cases is quite different. Lai & Lee (1981) show that the added mass of a vertically
oscillating spheroid is logarithmically infinite when Ω → 0 and drops to zero at Ω = 1,
while, according to Hurley’s (1997) solution, the added mass of a circular cylinder is
identically zero for Ω 6 1. Hurley & Keady (1997) have generalized Hurley’s (1997)
solution to take viscous effects into account. It follows from their theory that Hurley’s
(1997) solution is expected to hold approximately for the viscous case at sufficiently
large Reynolds numbers, which are normally encountered in experiment. At the same
time, for obvious physical reasons, the effects due to viscosity are expected to cause
non-zero damping at Ω > 1. Ermanyuk (2000) has evaluated experimentally the added
mass and damping of an oscillating circular cylinder in a deep linearly stratified fluid.
The measured values are found to be in a good agreement with Hurley’s (1997)
solution.

Mention should be made of the work done by Gorodtsov & Teodorovich (1986).
They have evaluated the mean power radiated by an oscillating body in a stratified
fluid. However, their results are found to be in disagreement with the results obtained
in Hurley (1997) and Lai & Lee (1986). The disagreement is due to the assumption
that a body in a continuously stratified fluid can be modelled by the distribution of
singularities obtained from the solution of the same problem in ideal homogeneous
fluid. At the same time, the results presented in Gorodtsov & Teodorovich (1986) can
be easily corrected once a correct distribution of singularities is known. In the present
paper we make use of their approach in combination with the recent results obtained
in Voisin (2001b).
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It should be noted that, for the sake of simplicity, in the major part of the
above-mentioned theoretical studies the fluid is assumed to be infinitely deep, inviscid
and having constant Brunt–Väisälä frequency. Therefore, an investigation of more
realistic and general types of stratification is of considerable interest. Notable progress
in this direction has been attained in the experimental research on the drag on a
body moving horizontally at constant velocity in a stratified fluid (the so-called ‘dead
water’ phenomena). The drag on a sphere has been measured in a two-fluid system
with interface (Nikitina 1959), linearly stratified fluid (Lofquist & Purtell 1984),
and a thermocline (Shishkina 1996). Shishkina (1996) also presents a comparative
analysis of the drag coefficients for a sphere for different profiles of stratification. The
measurements of the drag on a two-dimensional body include the case of mountain-
shaped profiles in linearly stratified fluid (Castro, Snyder & Baines 1990) and a
circular cylinder in thermocline (Arntsen 1996).

In the present investigation we consider the force acting on two- and three-
dimensional bodies oscillating horizontally in a continuously stratified fluid. The
cases of a circular cylinder and a sphere provide clues to the understanding of the
main effects in two-dimensional and three-dimensional problems, respectively. We
focus our attention on two typical cases of stratification: (a) linearly stratified fluid
of limited depth, (b) a smooth density profile with homogeneous upper and lower
layers and a layer of high density gradient (pycnocline) in between. Thus, we can
compare the dynamical properties of these two types of wave guides. The qualitative
difference between the phase patterns of internal waves propagating within these two
types of wave guides can be predicted by ‘ray’ theory. In particular, the literature
on the reflection of internal waves at rigid boundaries in linearly stratified fluid is
reviewed in Turner (1973). A detailed recent study of this problem can be found
in Kistovich & Chashechkin (1995). The evolution of internal waves produced by a
vibrating cylinder in the case of thermocline stratification is described in Nicolaou,
Liu & Stevenson (1993).

The experimental technique used in the present investigation is analogous to the one
described in Ermanyuk (2000). The theoretical background is based on the important
paper by Cummins (1962) (see also Wehausen 1971 for an overview and Kerwin
& Narita 1965 for a pioneering experimental study). Following this approach, we
make use of experimental records of damped oscillations of a body (impulse response
functions) in a stratified fluid and Fourier-transform the problem from the time- to the
frequency-domain in order to evaluate the frequency-dependent dynamic coefficients,
namely added mass and damping. The first detailed analysis of the dynamic effects
due to stratification on the dynamics of oscillatory motion of a submerged body was
executed in the time-domain (Larsen 1969). Larsen (1969) gives the solution to the
problem of the damped oscillations of a sphere and circular cylinder (in the latter
case, the final result without detailed proof) initially displaced from the equilibrium
position in a linearly stratified fluid. In the present investigation, we apply Fourier
transforming from the time- to the frequency-domain not only to the experimental
data but also to Larsen’s (1969) results and show that they exactly coincide with those
obtained by Hurley (1997) and by Lai & Lee (1981) for the cases of vertical oscillations
of a circular cylinder and a sphere, respectively. We also present some notes on the
application of the Kramers–Kronig relations (see Kotik & Mangulis 1962; Wehausen
1971) which are used effectively in many problems of body oscillations in surface
waves (see e.g. McIver & Linton 1991). In particular, when applied to Hurley’s (1997)
solution, these relations require a modification as compared to their popular form
(Wehausen 1971) in strict accordance with Landau & Lifshitz (1980).
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The present investigation consists of two parts. In Part 1, the present paper, we
consider the oscillations of a circular cylinder in a continuously stratified fluid. The
theoretical background of the experimental method is described in § 2. In § 2 we
also define the non-dimensional force coefficients and discuss the application of the
Kramers–Kronig relations to the frequency-dependent added mass and damping. The
description of the experimental installation is given in § 3. In § 4 we present the results
of experiments and their discussion.

Part 2, a subsequent paper, is dedicated to the case of a sphere. There we discuss the
particularities of the three-dimensional problem for the same types of stratification
as in Part 1 and, in particular, present an experimental verification of the solution for
the force acting on a horizontally oscillating sphere in infinitely deep stratified fluid
with N = const recently obtained by Voisin (2001a).

2. Theoretical background
Let us assume that a body performing small oscillations in a continuously stratified

fluid can be idealized as a linear system. It is well known that, once the response of
any stable linear system to a unit impulse r(t) is known, the response of the system
to an arbitrary force f(t) may be written as the convolution integral

x(t) =

∫ ∞
0

r(τ)f(t− τ) dτ. (2.1)

In the case of harmonic forcing with frequency ω

f(t) = f0 exp(iωt), (2.2)

and substituting (2.2) in (2.1) one obtains

x(t) = f0 exp(iωt)R(ω), (2.3)

where the complex frequency response function R(ω) is defined as Fourier transform
of the impulse response function

R(ω) =

∫ ∞
0

r(τ) exp(−iωτ) dτ.

Let us separate the complex frequency response function into real and imaginary
parts as R(ω) = Rc(ω)− iRs(ω), where

Rc =

∫ ∞
0

r(τ) cos(ωτ) dτ, Rs =

∫ ∞
0

r(τ) sin(ωτ) dτ.

Furthermore, for the sake of clear physical representation, we introduce the am-
plitude |R| = ([Rc]

2 + [Rs]
2)1/2 and the phase θ = arctan(Rs/Rc) of the frequency

response function. In the general case of an arbitrary exciting force the motion of a
body emitting waves can be mathematically described by an integro-differential equa-
tion containing a convolution integral, which takes into account the ‘memory’ effects.
However, for the particular case of harmonic excitation, the equation of body motion
in one degree of freedom reduces to the second-order linear differential equation with
frequency-dependent coefficients (see Cummins 1962; Wehausen 1971), which can be
written as follows:

(M + µ(ω))
d2x

dt2
+ λ(ω)

dx

dt
+ cx = f0 exp(iωt). (2.4)
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Here, M is the inertia of a body, µ(ω) is the added mass, λ(ω) is the damping
coefficient, and c is the restoring force coefficient. In what follows, we restrict our
consideration to the case of stable systems, i.e. we assume c > 0. Combining (2.3)
and (2.4) and using linearity of the system one can write the formulas for frequency-
dependent coefficients

µ(ω) =
c

ω2

(
1− |R(0)|
|R(ω)| cos(θ(ω))

)
−M, (2.5)

λ(ω) =
c

ω

|R(0)|
|R(ω)| sin(θ(ω)). (2.6)

Here |R(0)| denotes the amplitude of the frequency response function at zero
frequency. Note that for a unit impulse cR(0) = 1, which follows from substituting
(2.3) in (2.4) and setting ω = 0. The use of experimental records obtained for an
arbitrary value of the impulse necessitates the normalization of |R(ω)| by |R(0)|. This
technique is applicable to any linear system regardless of its physical nature provided
the condition of causality is satisfied. In particular, this approach can be applied to
prove the identity of time-domain (Larsen 1969) and frequency-domain (Hurley 1997;
Lai & Lee 1981) solutions to the problem of the vertical oscillations of a circular
cylinder and a sphere in unbounded stratified fluid with constant Brunt–Väisälä
frequency N. The Brunt–Väisälä frequency is defined as N(y) = (−g dρ/ρ dy)1/2,
where ρ(y) is the fluid density, the y-axis is directed vertically upwards, and g is
the gravity acceleration. An interested reader can find details concerning the relation
between the time- and frequency-domain solutions in Appendix A.

It is important to note that the added mass µ(ω) and damping coefficient λ(ω)
are related to each other by the Kramers–Kronig relations. The derivation of these
relations is presented in detail in Landau & Lifshitz (1980). The Kramers–Kronig
relations relate the real and imaginary parts of any complex function of the frequency
ω, which is analytic in one half of the complex ω-plane. In the theory of ship motions,
the relevance of the Kramers–Kronig relations to the function µ(ω) − iλ(ω)/ω was
first recognized by Kotik & Mangulis (1962). As emphasized in Landau & Lifshitz
(1980) and Kotik & Mangulis (1962), relations of Kramers–Kronig type are to be
expected whenever there is linearity and causality. In the present study the causal
function is the impulse response r(t) and the frequency responce R(ω) plays the role of
the so-called susceptibility (see Landau & Lifshitz 1980), which represents the ratio of
harmonic response to harmonic forcing. As is evident from (2.5) and (2.6), the added
mass and damping are simply related to the Fourier-image of the causal function of
time. Correspondingly, the function µ(ω) − iλ(ω)/ω is analytic in the lower part of
the complex ω-plane. The singularities of this function are the zeros of R(ω), which
are all in the upper part of the ω-plane, and, in some cases, the origin ω = 0. In
particular, the singularity at ω = 0 is present in Hurley’s (1997) solution. Following
Landau & Lifshitz (1980) we can write, in our notation,

µ(ω)− µ(∞) =
2

π

∫ ∞
0

λ(α)
dα

α2 − ω2
, (2.7)

λ(ω) = −2

π
ω2

∫ ∞
0

[µ(α)− µ(∞)]
dα

α2 − ω2
+ λ(0). (2.8)

Here µ(∞) is the limit of added mass at ω →∞ and the integrals are Cauchy principal-
value integrals. The above expressions are different from those given in Wehausen



426 E. V. Ermanyuk and N. V. Gavrilov

(1971) in the presence of the last term in (2.8), which takes into account the simple
pole of µ(ω)− iλ(ω)/ω at ω = 0. There are reasons to believe that the singularity at
ω = 0 appears not only in Hurley (1997) but also in other two-dimensional problems
of body oscillations in continuously stratified fluid. The proof of the Kramers–Kronig
relations for the solution given in Hurley (1997) is presented in Appendix B. Let
us also note that with the experimental technique used in the present paper the
Kramers–Kronig relations are fulfilled automatically (to within the accuracy of the
experiments).

It should be also noted that the presence of the singularity at zero frequency in
the function µ(ω)− iλ(ω)/ω makes it necessary to introduce a correction of another
popular formula for the added mass coefficient (see Wehausen 1971), which requires
zero value of the integral ∫ ∞

0

[µ(ω)− µ(∞)] dω. (2.9)

However, the value of the integral (2.9) is non-zero for the solution presented in
Hurley (1997) (for details see Appendix B). A similar result is expected for other
two-dimensional problems in continuously stratified fluid. Note, however, that in
three-dimensional problems the formulas (2.7), (2.8) can be used in their standard
form (Wehausen 1971) since the singularity at ω = 0 does not occur. Accordingly,
the integral (2.9) takes a zero value.

The Kramers–Kronig relations and their consequences give an efficient test for the
validity of numerical and experimental results. They can also be effectively used in
the methods aimed at the evaluation of the mean power radiated with waves (see
e.g. Hurley 1969; Gorodtsov & Teodorovich 1986). Multiplying (2.4) by dx/dt then
integrating and taking an average over a period of oscillations, one can immediately
obtain that the mean dissipated power is P (ω) = a2ω2λ(ω)/2, where a is the amplitude
of harmonic oscillations. Thus, once the power P (ω) is known, it is easy to reconstruct
the damping coefficient λ(ω) and the added mass µ(ω).

In the above considerations we have discussed the general properties of the added
mass and damping coefficients in the context of the ‘inviscid linear scenario’ when
the hydrodynamic loading is governed by wave effects. In this case, there is only one
dynamically important dimensionless parameter Ω = ω/N, which plays the role of a
Froude number. For a cylinder of diameter D oscillating in a continuously stratified
fluid, it is convenient to introduce the non-dimensional added mass and damping
coefficients as follows:

Cµ = µ/ρcS, (2.10)

Cλ = λ/ρcSN, (2.11)

where ρc is the fluid density at the depth corresponding to the cylinder centre,
and S = πD2/4 is the cross-sectional area. The choice of the background scaling
frequency N for parameter Ω and damping coefficient Cλ defined by (2.11) is obvious
for a uniformly stratified fluid with N = const. For an arbitrary distribution of
the buoyancy frequency over depth, it is natural to choose either the global cut-off
frequency for wave effects N = Nm = max[N(y)] or the local cut-off frequency at
the vertical coordinate yc of the cylinder centre so that N = Nc = N(yc). In the
present study the geometric set-up for experiments in the pycnocline is chosen so that
N = Nm = Nc. Correspondingly, Ω = ω/Nm and Cλ = λ/ρcSNm. The definition of the
added mass coefficient (2.10) is appropriate for any type of stratification.

With the added mass and damping coefficients defined as in (2.10) and (2.11),
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Figure 1. Experimental setup.

Hurley’s (1997) solution for the force acting on a circular cylinder oscillating in an
unbounded uniformly stratified fluid is Cµ ≡ 0, Cλ = (1 − Ω2)1/2 for Ω < 1, and
Cµ = (1 − Ω−2)1/2, Cλ ≡ 0 for Ω > 1. It should be noted that these expressions are
independent of the direction of oscillations. In what follows, Hurley’s (1997) solution
serves as the infinite-depth limit for the analysis of the effects caused by the limited
vertical extent of stratification.

The non-dimensional oscillation amplitude a/D characterizes the nonlinearity of the
problem both for wave and viscous effects. In the present experiments this parameter
was sufficiently small (a/D < 0.1) that there were no detectable nonlinear effects to
within the accuracy of the experiments.

To complete the parametrization of the problem, we need to take into account the
effects due to viscosity. The in-line force coefficients for a circular cylinder oscillating
in a homogeneous fluid are known to be the functions of the Keulegan–Carpenter
and Stokes numbers (see Sarpkaya 1986). In the case of harmonic oscillations, the
Keulegan–Carpenter number is equivalent to a/D. The Stokes number is usually
introduced as β = D2ω/ν, where ν is kinematic viscosity. The role of this parameter
will be discussed in § 4.1 dedicated to experiments in homogeneous fluid. For a
stratified fluid, it is convenient to introduce the ‘internal’ Stokes number βN =
β/Ω = D2N/ν. Finally, the functions sought in the present experimental study can
be formulated as Cµ = Cµ(Ω), Cλ = Cλ(Ω) measured at certain values of βN for
a given geometric set-up of the experiments. The set of non-dimensional geometric
parameters reduces to H/D for linearly stratified fluid, where H is the fluid depth,
and δ/D for the pycnocline, where δ is the characteristic pycnocline thickness. The
centre of the cylinder in all experimental runs was submerged to the depth H/2. In
experiments with the pycnocline the total depth of fluid H was sufficiently large to
be considered infinite.

3. Experimental arrangement
The experimental technique used in the present study is similar to Ermanyuk

(2000), where one can find detailed descriptions. In what follows, we restrict our
description to the most essential points. The experiments were carried out in a test
tank (0.15 m wide, 0.38 m deep and 2.3 m long). The schematic of the experimental
installation is shown in figure 1. The damped oscillation tests were performed with
the help of a cross-shaped pendulum. A circular cylinder of diameter D = 3.7 cm was
attached to the lower end of the pendulum. The gaps between the ends of the cylinder
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and the sidewalls of the tank were equal to 0.5 mm. The volume of the immersed
streamlined part of the pendulum was less than 1% of the cylinder volume. The
upper part of the pendulum had a micrometric screw with a nut of mass mn = 188 g.
The variation of the vertical coordinate of the nut bn allowed the restoring moment
of the pendulum to be changed. The distance between the point of rotation of the
pendulum and the centre of the cylinder was b = 60 cm. The maximum magnitude
of the horizontal displacement of the cylinder in experimental runs did not exceed
0.1D. The moment of inertia of the pendulum I0 (without nut) was measured with an
accuracy of 0.5%, the measured value being I0 = 1.12× 106 g cm2. The total moment
of inertia is I = I0 + mnb

2
n. Correspondingly, the value of the inertial term in the

equation of the rectilinear motion (2.4) and formulas (2.5), (2.6) is M = I/b2. The
oscillations of the pendulum were induced by dropping a steel ball on a pre-tensioned
rubber membrane attached to the end of the horizontal bar of the pendulum. The
history of damped oscillations was measured by an electrolitic sensor whose output
was sampled at 20 Hz with a 12-bit analog-to-digital convertor. The restoring force
coefficient c was evaluated from static calibration in situ by loading a light bowl at
the end of the horizontal bar of the pendulum with standard calibrated weights. The
accuracy of static calibration was about 0.5%. Because of the high sensitivity of the
experimental system, special care was taken to protect it from mechanical vibrations
and air currents. To prevent the reflection of waves at the ends of the test tank, we
used two types of wave-absorbing devices. In the case of linear stratification the wave
energy of incident internal waves was effectively dissipated by perforated flat plates
installed parallel to the end of the test tank. In experiments with a pycnocline the
wave-energy absorber represented a ‘sandwich’ of two perforated flat plates and an
opaque plate, inclined at a small angle to horizontal. The performance of the wave
absorbers proved to be sufficiently effective.

A weak solution of glycerine (linear stratification) or sugar (pycnocline) in water
was used to produce a prescribed density distribution. Linear stratification was created
by slowly filling the test tank with several layers of fluid having a prescribed density
difference between the layers. The thickness of one layer was about 1.5–2 cm. Within
two days, the layered structure eventually disappeared due to diffusion. The linearity
of the resulting density distribution was checked by a conductivity probe calibrated
over samples of known density. These data were used to evaluate the Brunt–Väisälä
frequency.

A smooth density profile with a pycnocline was created by filling the test tank with
two layers of miscible fluids. Owing to diffusion, the initial sharp interface between the
layers evolved into a smooth density profile. In the coordinate system with the origin
taken at the free surface and the y-axis directed vertically upwards the measured
density distribution over depth fitted the following approximation:

ρ(y) = ρ0

[
1− ε

2
tanh

(
2(y + h)

δ

)]
, ρ0 =

ρ1 + ρ2

2
, ε =

ρ2 − ρ1

ρ1

,

where h is the depth of the upper layer (in experiments h = H/2), δ is the characteristic
thickness of the pycnocline, and ρ1 and ρ2 are the fluid densities in the upper and
lower layers, respectively. According to the theoretical solution for the problem of
diffusion of a weak admixture (see, for example, Landau & Lifshitz 1987) the density
profile is described by an error function. However, in the Taylor series for an error
function and for a hyperbolic tangent the first two terms coincide while the third
terms differ by only 25%. As result, both functions provide good approximations
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to the experimental data. However, from a practical point of view, the use of a
simple analytical function, such as a hyperbolic tangent, is more convenient. In
accordance with theoretical predictions the characteristic thickness of the pycnocline
increases with time as δ ∼ t1/2. Owing to the low diffusion rate of sugar in water, the
characteristic time scale of this growth is measured by days. There was no detectable
increase of δ within the few hours needed to perform a series of experiments. To
study a sufficiently broad range of non-dimensional frequencies Ω for different values
of δ/D as well as the effects due to variation of βN , the experiments were performed
for several values of ε (ε = 0.003; 0.006; 0.009).

Because of instrument noise, reliable experimental estimates of the frequency-
dependent coefficients may be obtained in a certain frequency range in the vicinity of
the frequency ω∗ corresponding to the resonant peak of |R(ω)|. To study the whole
frequency range of interest, it is necessary to perform a series of experiments for a set
of ω∗ and match the results on a common plot so that the data obtained at different
ω∗ overlap. The variation of ω∗ can be easily attained by variation of the restoring
force coefficient c. For each set of experimental conditions we recorded about a dozen
impulse response functions at different c.

4. Experimental results
4.1. Homogeneous water

The experiments in homogeneous water were performed to obtain background infor-
mation on the behaviour of added mass and damping for a circular cylinder oscillating
in a viscous fluid of limited depth. There exists an extensive literature on the force
coefficients for a circular cylinder submerged in oscillatory flow of viscous fluid. The
ongoing research activity in this field is motivated by the important practical problem
of dynamical interaction between marine structures and the ocean environment. As
a result, most reported experiments have been performed under conditions corre-
sponding to relatively high values of the Keulegan–Carpenter and Stokes numbers.
A particular case of low Keulegan–Carpenter numbers is considered in Sarpkaya
(1986). However, the range of non-dimensional parameters, which is of interest in
the present study, and, in particular, the effect of limited depth H , has not yet been
studied. In addition, the present experiments in homogeneous water were motivated
by the necessity to cut out unwanted free-surface effects. In a sufficiently long test
tank, the natural period of free oscillations of water (period of seiches) can be close to
the frequency of the pendulum oscillations ω∗. As this takes place, the energy of the
pendulum oscillations is gradually transferred into the energy of seiche waves (at the
time scale of several periods 2π/ω∗) and vice versa. For the pendulum motion, one
observes a typical pattern of beating. In this case, the processing of an experimental
record according to (2.5), (2.6) shows discontinuities for the curves µ(ω) and λ(ω),
which are localized in a narrow frequency band in the vicinity of the frequency of
seiche motion. To filter out this effect, for each value of water depth H the length
of the fluid volume in the test tank was limited by insertion of endwalls so that the
seiche frequency was twice the highest frequency studied in experiments. Under this
condition, there was no detectable interference with the free-surface effects. The free
surface could be considered as a rigid lid.

Experiments in homogeneous water can be interpreted within the framework of
the classic Stokes asymptotic theory of oscillatory motion in homogeneous viscous
fluid under assumptions a/D � 1 and β � 1 (see Stokes 1851; Wang 1968; Landau
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Figure 2. Non-dimensional damping Λ vs. Stokes number β for homogeneous fluid of limited
depth. Solid line: formula (4.1).

& Lifshitz 1987). For a cylinder oscillating in unbounded viscous fluid this theory
predicts the following values of the added mass and damping coefficients per unit
length:

µ = ρS, λ = π
√

2ηβ1/2, (4.1)

where η = ρν is the dynamic viscosity of the fluid.
The present experiments were conducted for a set of non-dimensional water depths

H/D = 7.57, 4.32, 3.24, 2.19, 1.65. It is found that the added mass coefficient of the
cylinder depends only on the depth of fluid. The mean measured values are Cµ = 1.05,
1.12, 1.24, 1.54, 2.25, respectively. The scatter of the experimental points about the
mean values of Cµ does not exceed ±4%. It is interesting to compare the measured
values with the results of numerical calculations of Cµ based on the model of ideal
homogeneous fluid of limited depth (the free surface is idealized as a rigid lid). For
the experimental values of H/D, calculations performed with the help of a computer
code developed by Professor I. V. Sturova yield the following values: Cideal

µ = 1.03,

1.09, 1.17, 1.41, 1.87. The difference between Cµ and Cideal
µ systematically increases for

lower values of H/D.
The values of the damping coefficient Λ = λ/η versus β for different H/D are

plotted in figure 2 on a logarithmic scale. It is easy to see that for all values of the
fluid depth H/D the law Λ ∼ β1/2 is well satisfied. The effect of fluid depth on Λ
is pronounced when H/D < 3.24 although it is detectable at higher H/D. It should
be noted that for large H/D, for example, at H/D = 7.57 when the effect of limited
depth is supposed to be negligible, the damping coefficient Λ is somewhat greater
than predicted by (4.1). The disagreement is believed to be caused by the relatively
low value of β in experiments and by the effect of the flow in the gaps between the
ends of the cylinder and the walls of the tank.

For the purpose of explicit quantitative comparison, the results of experiments in
homogeneous water are also presented in terms of Cλ(Ω) together with the exper-
imental data obtained in linearly stratified fluid. In this case the normalization of
λ measured in homogeneous water by the wave damping scale ρcSN has a purely
formal sense.
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Figure 3. Damping coefficient Cλ vs. frequency Ω in linearly stratified fluid: solid line, theory for
H/D = ∞ (Hurley 1997). Other lines show experimental data obtained in homogeneous fluid for
H/D = 1.65 (– · –), 2.19 (··· ·), 3.24 (– – –), 7.57 (– ·· –). Vertical bars denote the scatter of experimental
data. Experimental data for H/D = 7.57 shown in figures 3, 4 and 5 are taken from Ermanyuk
(2000).

4.2. Linear stratification

The effect of limited depth for linearly stratified fluid was studied at H/D = 1.65,
2.19, 3.24. The values of the Brunt–Väisälä frequency were N = 0.9, 0.85, 0.9 rad s−1,
respectively. The difference between the actual values of N at different H/D is
sufficiently small to be safely neglected. For better insight in the large-depth limit, we
also use the data from Ermanyuk (2000), which were obtained at H/D = 7.57 and
N = 0.88 rad s−1, with the help of an 8-bit analog-to-digital convertor at the sampling
frequency 12 Hz. Correspondingly, the scatter of the data is somewhat higher than in
the present experiments.

The measured values of Cλ(Ω) at different H/D are shown in figure 3. The data
obtained in homogeneous water and shown in figure 2 are presented in figure 3
schematically by dash-dot, dash, dot and double-dot-dash lines. It is easy to see that at
high frequency of oscillations (Ω > 1) the damping is conditioned by viscous effects,
which are quantitatively very close to those measured in the homogeneous water.
When Ω < 1, the radiation of energy with internal waves is the main mechanism of
energy dissipation. As result, the damping coefficient Cλ drastically increases compared
to the value it takes in homogeneous water. However, as H/D decreases, the portion
of energy radiated with internal waves also decreases so that the viscous dissipation
of energy becomes increasingly important. The drop of the radiated wave energy
is most pronounced for the internal waves with nearly vertical vector of the group
velocity (i.e. for Ω → 1). These waves undergo multiple reflections when travelling
between the cylinder and the free surface (bottom). Thus, a certain portion of energy
is ‘trapped’ in this region of space instead of being effectively radiated.

A qualitative theoretical description of this effect can be found within the framework
of Gorodtsov & Teodorovich’s (1986) approach with the important correction due
to Voisin (2001b). Gorodtsov & Teodorovich (1986) derived an expression for the
mean power radiated with internal waves by an arbitrary source of mass q(x) in
a stratified fluid. As the first approximation, they suggested modelling a circular
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cylinder oscillating in a uniformly stratified fluid of infinite extent by the surface
source obtained from the solution of the problem in an unbounded homogeneous
fluid:

q(x) = 2U · x
r
δ̂(r − r̃), (4.2)

where δ̂ denotes the Dirac delta, x = (x, y), U = (U,V ) is the velocity vector of the
cylinder, r̃ = D/2, and r = (x2 + y2)1/2. The estimate of the mean radiated power
obtained with this distribution does not agree with the theoretical results by Hurley
(1997) or the measurements presented in Ermanyuk (2000). As found by Voisin
(2001b), the correct form of the surface source is

q(x) = 2U ∗ · x
r
δ̂(r − r̃) (4.3)

with

U∗ = [1 + (1− Ω−2)1/2] 1
2
U,

V ∗ = [1 + (1− Ω−2)−1/2] 1
2
W.

Note that for Ω < 1 the values U∗ and V ∗ are complex-valued. Substitution of the
distribution (4.3) into the formula for wave power given in Gorodtsov & Teodorovich
(1986) yields a result that exactly coincides with Hurley’s (1997) solution for a circular
cylinder oscillating in an unbounded uniformly stratified fluid, which, expressed in
terms of the non-dimensional wave power Cp = P (a2ρcSN

3)−1, is

Cp = 1
2
Ω2(1− Ω2)1/2. (4.4)

Gorodtsov & Teodorovich (1986) also derived an expression for the wave power
radiated by an arbitrary source q(x) in a uniformly stratified fluid of limited depth.
The combination of this expression with the source (4.3) yields the following formulas
for the non-dimensional wave power Cp radiated by a circular cylinder oscillating at
the depth H/2 in a linearly stratified fluid of depth H:

Cp = Ω2(1− Ω2)1/2Ah,v, (4.5)

with Ah =
∑∞

n=0(n + 1)−1J2
1 ((n + 1)K) and Av =

∑∞
n=0(n + 1/2)−1J2

1 ((n + 1/2)K)
for the horizontal and vertical directions of oscillation, respectively, where K =
π(1 − Ω2)−1/2D/H and J1 is the Bessel function of the first order. It should be kept
in mind that the use of the distribution (4.3) for a linearly stratified fluid of limited
depth is just an approximation, which is appropriate only for sufficiently large H/D.
Some details concerning the derivation of (4.4) and (4.5) are given in Appendix C.

Curves of (4.5) for the experimental values of H/D are shown in figure 4 to-
gether with the experimental points. To separate the wave and viscous damping in
experimental data we use an approach which is analogous to Froude’s hypothesis for
separation of wave and viscous components of ship resistance (see e.g. Newman 1977).
The physical reason for the validity of this hypothesis is the difference between the
characteristic length scales of wave and viscous phenomena. In the present problem,
the thickness of the oscillatory boundary layer is of order δ∗ ∼ (ν/ω)1/2. The charac-
teristic size of the internal wave pattern generated by the oscillating body is given by
the width of the internal wave beams, which is of order D. The non-dimensional ratio
of these parameters δ∗/D ∼ β−1/2 is sufficiently small. Thus, the damping coefficient
λ(ω) measured in experiments can be schematically represented as a sum of the wave
damping λw = Cw

λ ρcSN and the viscous damping λv = Cv
λρcD(ων)1/2. Furthermore, we

can assume that for a fixed geometry of the experiments Cw
λ = f(Ω) and Cv

λ ≈ const. It
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Figure 4. Non-dimensional radiated wave power Cp vs. frequency Ω in linearly stratified fluid: solid
line, formula (4.4) (Hurley 1997); other lines show calculations by formula (4.5) for H/D = 1.65
(– · –), 2.19 (· · · ·), 3.24 (– – –), 7.57 (– ·· –).

should be kept in mind that the above assumptions constitute only a rough simplified
scheme of the phenomena. On the physical level, wave and viscous effects in stratified
fluids are interrelated in a rather complicated manner.

It follows from the data presented in figure 3 that Cv
λ can be evaluated either

from experiments in homogeneous water or from the data on Cλ(Ω) at Ω > 1 (i.e.
when Cw

λ ≡ 0). Within the accuracy of the experimental data, both estimates yield
essentially the same result, which implies that, for practical purpose, we can take
Cv
λ ≈ Λ/β1/2. Finally, in non-dimensional form

Cλ(Ω) = Cw
λ (Ω) +

4

π

(
Ω

βN

)1/2

Cv
λ. (4.6)

It is apparent that the value Cλ(Ω) at given Ω is weakly sensitive to a small variation
of N since the second term in (4.6) is proportional to N−1/2. Thus, in the present
experiments the difference between the actual values of N at different H/D can be
neglected.

The experimental points plotted in figure 4 represent the estimate of the non-
dimensional radiated wave power

Cp(Ω) = Cw
λ Ω

2/2. (4.7)

As is seen in figure 4, the approach, which uses the results by Gorodtsov & Teodor-
ovich (1986) and Voisin (2001b), provides a consistent qualitative description of the
main effect due to limited depth, i.e. the ‘red shift’ in the position of the maximum
of the radiated wave power and the decrease of its magnitude. As might be expected,
the quantitative agreement between theoretical and experimental results is good only
for sufficiently large H/D, i.e. when (4.3) is applicable. At low H/D, the asymptotic
formula (4.5) overestimates the power radiated with internal waves.

Values of Cµ(Ω) measured at different H/D are shown in figure 5. At low frequency
the added mass coefficient Cµ is weakly dependent on Ω. When the oscillation
frequency exceeds a certain value Ω0 < 1, which is dependent on H/D, Cµ starts to
grow and gradually approaches the asymptotic value for the homogeneous fluid of
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Figure 5. Added mass coefficient Cµ vs. frequency Ω in linearly stratified fluid: solid line, theory
for H/D = ∞ (Hurley 1997); other lines show asymptotic values measured in homogeneous water
for H/D = 1.65 (– · –), 2.19 (· · · ·), 3.24 (– – –), 7.57 (– ·· –). Vertical bars denote the scatter of
experimental data.
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Figure 6. Damping coefficient Cλ vs. frequency Ω in pycnocline at
ε = 0.009: solid line, Hurley (1997).

given depth. As the depth of fluid H/D decreases, the non-dimensional frequency Ω0

shifts toward lower values. The asymptotic values of Cµ measured in homogeneous
fluid at H/D = 1.65, 2.19, 3.24, 7.57 are marked in figure 5 by horizontal dash-
dot, dash, dot and double-dot-dash lines, respectively. Recall that these values are
systematically higher than the calculated estimates Cideal

µ mentioned in § 4.1.

4.3. Pycnocline

The experiments in the stratified fluid with a pycnocline were carried out for three
different values of relative difference of densities between the layers: ε = 0.003,
0.006, 0.009. The total fluid depth in all the cases considered was H = 28 cm.
The non-dimensional characteristic thickness of the pycnocline varied in the range
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Figure 7. Added mass coefficient Cµ vs. frequency Ω in pycnocline at
ε = 0.009: solid line, Hurley (1997).

0.43 6 δ/D 6 2.62. The measured values of Cλ(Ω) and Cµ(Ω) are presented in figures 6
and 7 for ε = 0.009. It is easy to see that at low δ/D the variation of the added
mass coefficient Cµ with Ω is relatively small. Cµ is close to 1, i.e. to the value it takes
in unbounded ideal homogeneous fluid. Correspondingly, the damping coefficient Cλ
and radiation of energy with internal waves are low. The viscous effects play the
dominant role in the dissipation of energy. Note that the hydrodynamic loads on
a cylinder oscillating at the interface of a two-fluid system (i.e. in the limiting case
δ/D → 0) have not yet been studied theoretically. To the best of our knowledge, the
existing studies are focused on the case when a body is entirely submerged in either
the upper or lower layers of a two-fluid system (see e.g. Gorodtsov & Teodorovich
1986; Khabakhpasheva 1993; Sturova 1994). The dynamics of a body oscillating at
the interface between two fluids is considered only in Akulenko & Nesterov (1987)
and Akulenko et al. (1988), where the analysis is limited to the case of vertical
oscillations of a vertical slender body. In the general case the problem is complicated
by the effects at the contact line between the interface and the body surface. An
experimental study closely related to the theoretical works by Akulenko & Nesterov
(1987) and Akulenko et al. (1988) is described by Pyl’nev & Razumeenko (1991), who
considered vertical oscillations of a thin vertical float in a continuously stratified fluid
with a sharp pycnocline.

The increase of δ/D leads to the rapid growth of the wave radiation. As is apparent
from figure 6, both the magnitude of the damping coefficient Cλ and the range of
non-dimensional frequencies Ω where it takes significantly high values increase with
δ/D. Accordingly (as follows from the Kramers–Kronig relations), the variation of
Cµ with Ω becomes more and more pronounced. When δ/D = 2.62 (see figures 6
and 7), the measured values of Cλ(Ω) and Cµ(Ω) are already sufficiently close to the
case of unbounded uniformly stratified fluid, as is evident from the comparison with
the theoretical curves by Hurley (1997). It is interesting to note the occurrence of
negative Cµ in figure 7. A similar effect is revealed in calculations of the added mass
of a circular cylinder oscillating under the free surface of ideal homogeneous fluid
(see Greenhow & Ahn 1988; Eatock Taylor & Hu 1991). In the present problem,
there is no physical limitation on negative values of Cµ; however Cλ must be positive
since the energy is radiated from the cylinder. As discussed by Greenhow & Ahn
(1988) in the context of the Kramers–Kronig relations, negative µ(ω) may occur in a
frequency range where the drop of λ(ω) is sufficiently rapid (at the same time µ(∞)
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should not be very large). Physically, this corresponds to a drastic drop of radiated
wave energy, which is normally accompanied by the presence of standing waves in
the vicinity of the cylinder. In the present problem these conditions occur in the
pycnocline for internal waves with sufficiently large angle between the group velocity
and the horizontal. Also, regarding functions Cµ(Ω) and Cλ(Ω), one should keep
in mind that, because of technical limitations, reliable experimental information for
Ω → 0 could not be obtained. Hence the low-frequency asymptotic calls for further
theoretical investigation.

The data obtained in the present experiments show that, if we are concerned with the
dynamic effects in a real stratified fluid (natural stratification is usually characterized
by the presence of a pycnocline), the popular approximation of a smooth pycnocline
in the form of a two-fluid system with an interface between the layers is expected to
be applicable only in a narrow range of low δ/D. At the same time, another popular
idealization, namely the model of unbounded uniformly stratified fluid, becomes
appropriate and sufficiently accurate when δ/D > 2.6. The intermediate range of δ/D
studied in the present experiments seems to be the most complicated regarding a
theoretical description, which of necessity should take into account the details of the
distribution N(y).

It might be appealing to extend the approximate approach described in § 4.2 to
more general types of stratification, in particular to the case of a pycnocline. However,
the success of Gorodtsov & Teodorovich (1986) in deriving analytical expressions for
wave power radiated in uniformly stratified fluid of limited depth was conditioned by
the very simple form of the eigenfunctions in that problem. In the case of a pycnocline
the eigenfunctions of the problem are quite complicated (see Thorpe 1968). Hence, the
derivation of analytic expressions similar to (4.5) is rather problematic. Alternatively,
the case of pycnocline stratification can be investigated by numerical simulation. A
recent numerical study of the hydrodynamic force acting on a cylinder oscillating
in a pycnocline is given in Sturova (2001). In this study the pycnocline stratification
is approximated as a three-fluid system with homogeneous upper and lower layers
and a linearly stratified middle one. The cylinder is entirely submerged in the middle
layer. Numerical results presented in Sturova (2001) seem to capture the main effects
observed in the present experimental study. However, a detailed comparison shows
some disagreements, which are, presumably, due to approximation of the real smooth
pycnocline as a three-fluid system.

Experiments were also undertaken to study the effect of ε on Cλ and Cµ. When
the characteristic pycnocline thickness δ varies due to natural diffusion, it is not
easy to conduct an experiment at a fixed δ/D for different ε. However, in the
present experiments these data were obtained at δ/D = 1.23 (with accuracy ±2%)
for ε = 0.003, 0.006, 0.009, i.e. for the ‘internal’ Stokes numbers βN = 920, 1300, 1590.
The comparison of Cµ(Ω) and Cλ(Ω) in this case is given in figure 8 and figure 9,
respectively. The curves Cµ(Ω) coincide with each other, which suggests that the
‘inviscid scenario’ plays the dominant role for the added mass. At the same time,
damping coefficient Cλ(Ω) takes higher values for lower ε in accordance with (4.6).
The second term in (4.6) is proportional to N−1/2 or, equivalently, to (εg/δ)−1/4. Thus,
although the experimental values of δ and ε varied within broad ranges, the effect
of this variation on Cλ(Ω) is relatively weak. For example, when δ/D in experiments
increased from 0.43 up to 2.62 (ε = 0.009) the second term in (4.6) increased, roughly,
by 60%. This estimate is in good agreement with the observed difference between
Cλ(Ω) measured at different δ/D for Ω > 1 as is seen in figure 6.

Using (4.6), the total damping can be decomposed into wave and viscous compo-
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Figure 8. Added mass coefficient Cµ vs. frequency Ω in the pycnocline at
δ/D = 1.23 for different ε.
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Figure 9. Damping coefficient Cλ vs. frequency Ω in the pycnocline at δ/D = 1.23 for different ε.

nents. The result for the data shown in figure 9 is presented in figure 10 in terms of
the non-dimensional radiated wave power Cp(Ω). As can be seen in figure 10, there
is no systematic difference between the data obtained at different ε, which supports
the validity of decomposition (4.6). The effect of the pycnocline thickness on non-
dimensional radiated wave power Cp(Ω) defined by (4.7) is illustrated in figure 11 for
the data obtained at ε = 0.009. The non-dimensional radiated wave power decreases
with δ/D while the maximum of Cp(Ω) shifts toward lower values of Ω. Thus, at
least qualitatively, the effects of a finite vertical extent of stratification are similar for
both cases of stratification considered in the present study, as is evident from the
comparison of figure 4 and figure 11.
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Figure 10. Non-dimensional radiated wave power Cp vs. frequency Ω in the pycnocline at
δ/D = 1.23 for different ε: solid line, formula (4.4) (Hurley 1997).
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Figure 11. Non-dimensional radiated wave power Cp vs. frequency Ω in the pycnocline at
ε = 0.009: solid line, formula (4.4) (Hurley 1997).

5. Concluding remarks
In this work we have applied the Fourier analysis of impulse response functions

to evaluate experimentally the frequency-dependent added mass and damping of a
circular cylinder oscillating horizontally in a continuously stratified fluid. The cases
of the density distribution over depth studied include a linearly stratified fluid of
limited depth and a pycnocline. It is shown that the density stratification has a strong
effect on the force acting on an oscillating body. It is found that the main effect of
a finite vertical extent of stratification (the depth of linearly stratified fluid or the
pycnocline thickness) is to decrease the radiated wave power and to shift its maximum
toward lower non-dimensional oscillation frequencies. The effect is most pronounced
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at Ω → 1, i.e. for short waves with nearly vertical group velocity vector. For linearly
stratified fluid of limited depth the difference between the maximum and minimum
values of the added mass coefficient Cµ measured at fixed H/D is about 1; it slightly
increases for lower H/D. In a pycnocline, when δ/D is small, the variation of Cµ with
Ω is small, so that for a nearly two-fluid system with an interface one can assume
Cµ ≈ 1. As the pycnocline thickness δ/D increases, the measured values of Cµ(Ω)
gradually approaches the asymptotic case of unbounded uniformly stratified fluid
(Hurley 1997).

It is also shown that for the range of parameters studied the total damping can be
consistently decomposed into wave and viscous components. The viscous effects are
found to be increasingly important at low values of fluid depth H/D and ‘internal’
Stokes number βN . The value of the added mass coefficient is essentially governed by
an ‘inviscid scenario’.
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Appendix A. Equivalence of time-domain and frequency-domain
solutions

Consider a circular cylinder of diameter D, mass per unit length m and cross-
sectional area S floating in uniformly stratified fluid of infinite extent at the level of
neutral equilibrium so that m = ρcS , where ρc = ρ(yc) is the fluid density at the vertical
coordinate corresponding to the cylinder centre. Assume that the cylinder undergoes
small harmonic vertical oscillations. The restoring force coefficient can be evaluated
from hydrostatics as c = −gS (dρ/dy) = ρcSN

2 (see Lai & Lee 1981 for a detailed
discussion on decomposition of the fluid force into static and dynamic components).
Then, for non-dimensional dynamic coefficients Cµ = µ/ρcS and Cλ = λ/ρcSN,
equations (2.5), (2.6) yield

Cµ =
1

Ω2

[
1− Rc|R(0)|

R2
c + R2

s

]
− 1, (A 1)

Cλ =
1

Ω

Rs|R(0)|
R2
c + R2

s

. (A 2)

As found by Larsen (1969), the time-history ζ(t) of damped oscillations of a cylinder,
initially held at the vertical distance ζ0 from the horizon of neutral buoyancy and then
released with zero initial velocity, is described by the function h(t) = ζ(t)/ζ0 = J0(Nt),
where J0 is the Bessel function of zeroth order, and the origin of the coordinate
system is taken at the level of neutral equilibrium of the cylinder. This solution can
be interpreted as the response to downward step loading, which is ‘switched on’ at
t = 0. As follows from (2.1), the response function r(t) to a positive unit impulse is
related to h(t) by time-differentiation r(t) = −dh(t)/dt. Thus, the impulse response
function of a cylinder in uniformly stratified fluid is r(t) = NJ1(Nt). The Fourier
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transform of the function NJ1(Nt) (see e.g. Ditkin & Prudnikov 1961) is

Rs =
ω

(N2 − ω2)1/2
, Rc = 1 for ω < N,

Rs = 0, Rs = 1− ω

(ω2 −N2)1/2
for ω > N.

By substituting these expressions in (A 1), (A 2) one can obtain Cµ ≡ 0, Cλ =
(1−Ω2)1/2 for Ω < 1 and Cµ = (1−Ω−2)1/2, Cλ ≡ 0 for Ω > 1, which exactly coincide
with Hurley’s results for a circular cylinder. There is no doubt that equivalence of
time- (Larsen 1969) and frequency-domain (Lai & Lee 1981) solutions for a sphere
can be proven in similar manner. In the latter case, we restricted ourselves to a
numerical check of the equivalence by a version of the computer programme that
was used in the present study for the processing of experimental data.

Appendix B. Kramers–Kronig relations for Hurley’s (1997) solution
The validity of formulas (2.7), (2.8) for Hurley’s (1997) solution can be verified by

residue calculus. Taking into account the finite spectrum of internal waves (Ω 6 1),
(2.7) can be rewritten in non-dimensional form as

Cµ(Ω)− Cµ(∞) =
2

π

∫ 1

0

(1− ξ2)1/2 dξ

ξ2 − Ω2
, (B 1)

where the non-dimensional force coefficients are defined the same way as in Appendix
A and in equations (2.10), (2.11) of the main body of the paper.

Keeping in mind that µ(ω) and λ(ω)/ω are even and uneven functions of ω,
respectively, the integral in (B 1) can be represented as the integral along the unit
circle C by substituting ξ = 1

2
(z + 1/z):∫ 1

0

(1− ξ2)1/2 dξ

ξ2 − Ω2
= − 1

4i

∫
C

(z4 − 2z2 + 1) dz

[z4 + 2(1− 2Ω2)z2 + 1]z
.

The evaluation of this integral is a straightforward application of residue calculus.
It yields Cµ(Ω) = 0 for Ω < 1 and Cµ = (Ω2 − 1)1/2/Ω for Ω > 1, as expected. The
validity of (2.8), which in the present problem takes the form

Cλ(Ω) = −2

π
Ω2

∫ ∞
0

[Cµ(ξ)− 1]
dξ

ξ2 − Ω2
+ 1,

can be proven in a similar manner.
The integral (2.9) can be evaluated via residue calculus as the integral for the

function µ(ω)− iλ(ω)/ω in the lower half-plane along a closed contour, which consists
of the real axis with a small indentation at ω = 0 and the infinitely large semicircle.
In non-dimensional form, for Hurley’s (1997) solution the integration yields non-zero
value ∫ ∞

0

[Cµ(Ω)− Cµ(∞)] dΩ = −π
2
.

Appendix C. Calculation of mean radiated wave power
According to Gorodtsov & Teodorovich (1986), the mean power radiated by a

two-dimensional source of mass q(x) exp(iωt) in a uniformly stratified fluid of infinite
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extent is

P =
ρcω(N2 − ω2)

8π

∫
d2k|q(k)|2 δ̂(ω2ζ2 −N2k2), (C 1)

where k = (k, l) are the wavenumber vectors satisfying the dispersion relation ω2ζ2 −
N2k2 = 0, with ζ = (k2 + l2)1/2, and q(k) is the spatial spectrum

q(k) =

∫
q(x) exp(ik · x) d2x.

Integral (C 1) evaluates to

P =
ρcN

8π
(1− Ω2)1/2

∫ ∞
0

dζ

ζ
|q[ζΩ,±ζ(1− Ω2)1/2]|2. (C 2)

With the source (4.2) formula (C 2) yields Gorodtsov’s & Teodorovich’s (1986) result
for wave power

P = 1
2
πρcND

2(1− Ω2)1/2[U2Ω2 + V 2(1− Ω2)]

With the source (4.3), we have

P = 1
8
πρcND

2(1− Ω2)1/2(U2 + V 2), (C 3)

which, in non-dimensional form, amounts to (4.4). Note that for fixed amplitude of
oscillations the radiated wave power given by (C 3) does not depend on the direction
of oscillations in agreement with Hurley (1997).

For variable buoyancy frequency N(y) or finite fluid depth H , internal waves
propagate horizontally along the wave guide as a sum of vertical modes. Each mode
with index n is characterized by the dispersion relation ωn(k) and the eigenfunction
φn(k, y). The eigenfunctions are orthogonal and normalized in such a way that∫ 0

−H
N2(y)φn(k, y)φm(k, y) dy = δnm,

where δnm is the Kronecker delta. In this case Gorodsov & Teodorovich (1986) give
the following expression for the wave power:

P =
ρcω

3

4

∫
dk

k4

∑
n

∣∣∣∣∫ 0

−H
q(k, y)

∂φn

∂y
(k, y) dy

∣∣∣∣2 δ̂ [ ω2

ω2
n(k)
− 1

]
.

For constant N and finite H the eigenfunctions are sinusoidal and the wave power is
given by

P =
ρcN

8π
(1− Ω2)1/2

∞∑
n=1

1

n

∣∣∣∣∣∑± q
[nπ
H

(Ω−2 − 1)−1/2, ±nπ
H

]∣∣∣∣∣
2

.

For an oscillating circular cylinder located at depth y0 and represented by the source
(4.2), with y replaced by y + y0, Gorodtsov & Teodorovich (1986) obtained the
following estimate:

P = 2πρcND
2(1−Ω2)1/2

∞∑
n=1

1

n
J2

1 ( 1
2
nK)

[
U2Ω2 cos2

(
nπ
y0

H

)
+ V 2(1− Ω2) sin2

(
nπ
y0

H

)]
.
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For the source (4.3) we have instead

P = 1
2
πρcND

2(1− Ω2)1/2

∞∑
n=1

1

n
J2

1 ( 1
2
nK)

[
U cos

(
nπ
y0

H

)
+ V sin

(
nπ
y0

H

)]2

. (C 4)

In non-dimensional form for y0 = −H/2 and purely horizontal or vertical direction
of cylinder oscillations the formula (C 4) reduces to (4.3). Formulas (C 3) and (C 4)
for an arbitrary direction of oscillation were kindly pointed out to the authors by
one of the referees; initially their consideration was restricted to purely horizontal or
vertical oscillations.
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